求最小生成树普里姆算法和克鲁斯卡尔算法
求最小生成树普里姆算法和克鲁斯卡尔算法
程序代码:
/******************************************************************************
*\file graph_prim.h
*\brief 定义图相关的结构体
*\date 2017/04/03
*****************************************************************************/
#ifndef __GRAPH_PRIM_H_2017_04_03__
#define __GRAPH_PRIM_H_2017_04_03__
#ifdef __cplusplus
extern "C"{
#endif
#define VER_CHAR_SIZE (10) ///< 结点的字符串长度
typedef char ver_type[VER_CHAR_SIZE]; ///< 定义节点类型
/**
*\brief 图中 弧(边)的结构
*
* - 两个成员变量 分别是
* + 图顶点 在顶点向量中的下标值,值是从0下标开始的
* + 指向下一个弧(边)的指针
*/
typedef struct arc_st{
unsigned int index; ///< 顶点的下标值
unsigned int weight; ///< 权重
struct arc_st *p_next; ///< 指向下一个弧
}arc_st;
/**
*\brief 图中 顶点 的结构
*
* - 采用邻接表的方式存储,含有两个成员变量
* + 顶点的名称
* + 指向下一个弧(边)的指针
*/
typedef struct ver_st{
ver_type ver_name; ///< 顶点名称
arc_st *p_arc; ///< 弧(边)
}ver_st;
/**
*\brief 图的结构
*/
typedef struct adj_graph_st{
unsigned int arc_cnt; ///< 图中 边的数量
unsigned int ver_cnt; ///< 图中 结点的数量
ver_st *ver_list; ///< 顶点 列表 动态数组
}adj_graph_st;
/**
*\brief 辅助结构体 实现prim算法
*
* 记录选取的顺序
* 标记顶点是否已经标记过
*/
typedef struct prim_ver_st{
unsigned int index; ///< 顶点被标记的顺序位置
unsigned int weight; ///< 选择加入这个顶点的权重边
unsigned int isfinal; ///< 是否被标记过默认为0未标记,1表示标记
}prim_ver_st;
/**
*\brief 辅助结构体 实现prim算法
*
* 记录边,对边进行排序
*/
typedef struct prim_arc_st{
unsigned int ver1; ///< 边上顶点1
unsigned int ver2; ///< 边上顶点2
unsigned int weight; ///< 边的权重
unsigned int status; ///< 边的状态 0,1,2
}prim_arc_st;
#ifdef __cplusplus
}
#endif
#endif//__GRAPH_PRIM_H_2017_04_03__
程序代码:
/******************************************************************************
*\file graph_prim.cc
*\brief 图的最小生成树
* Prim算法
* 图 采用 邻接表(Adjacency list) 形式存储
*\date 2017/04/03
*****************************************************************************/
#include "graph_prim.h"
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#define RET_SUCCESS (1) ///< 成功状态
#define RET_FAILED (0) ///< 失败状态
/**
*\brief 查询结点在向量中的下标
*\param[in] pg 图的句柄
*\param[in] ver 待查询的结点
*\retval 返回下标志, 无失败可能
*/
static unsigned int find_vers_idx(adj_graph_st *pg, ver_type ver)
{
unsigned int i = 0;
unsigned int find_ok = 0;
assert(NULL != pg);
for (i = 0; i < pg->ver_cnt; ++i){
if (strcmp(pg->ver_list[i].ver_name, ver) == 0){
find_ok = 1;
break;
}
}
assert(find_ok);
return i;
}
/**
*\brief 向图中 增添边的信息
*\param[in,out] pg 图的句柄
*\param[in] s_pos 边的起始点
*\param[in] e_pos 边的终止点
*\param[in] weight 边的权重
*\retval 1 成功
*\retval 0 失败
*/
static int add_graph_arc(adj_graph_st *pg, unsigned int s_pos, unsigned int e_pos, unsigned int weight)
{
arc_st *p_tmparc = NULL, *exchg_tmp = NULL;
assert(NULL != pg);
assert(s_pos < pg->ver_cnt && e_pos < pg->ver_cnt);
p_tmparc = (arc_st *) malloc (sizeof(arc_st));
if (NULL == p_tmparc){
printf("call malloc failed, error[%d]", errno);
return RET_FAILED;
}
p_tmparc->index = e_pos;
p_tmparc->weight = weight;
p_tmparc->p_next = NULL;
///< 头部插入
exchg_tmp = pg->ver_list[s_pos].p_arc;
pg->ver_list[s_pos].p_arc = p_tmparc;
p_tmparc->p_next = exchg_tmp;
p_tmparc = (arc_st *) malloc (sizeof(arc_st));
if (NULL == p_tmparc){
printf("call malloc failed, error[%d]", errno);
return RET_FAILED;
}
p_tmparc->index = s_pos;
p_tmparc->weight = weight;
p_tmparc->p_next = NULL;
exchg_tmp = pg->ver_list[e_pos].p_arc;
pg->ver_list[e_pos].p_arc = p_tmparc;
p_tmparc->p_next = exchg_tmp;
return RET_SUCCESS;
}
/**
*\brief 构造 图
*\param[in,out] pg 图的句柄
*\retval 0 失败
*\retval 1 成功
*/
static int creat_graph(adj_graph_st *pg)
{
unsigned int i = 0;
ver_type start_ver, end_ver; ///< 一条边上 其实和终止结点
unsigned int start_pos = 0, end_pos = 0; ///< 启始 和 终止结点所对应的下标
unsigned int weight = 0;
assert(NULL != pg);
printf("输入图的结点数:");
scanf("%u", &pg->ver_cnt);
printf("输入图的边数:");
scanf("%u", &pg->arc_cnt);
pg->ver_list = (ver_st *) malloc (sizeof(ver_st) * pg->ver_cnt);
memset(pg->ver_list, 0, (sizeof(ver_st) * pg->ver_cnt));
printf("输入结点序列(例如:v1 v2 v3):\n");
for (i = 0; i < pg->ver_cnt; ++i){
scanf("%s", pg->ver_list[i].ver_name);
}
printf("输入边信息(例如:v1 - v2 5):\n");
for (i = 0; i < pg->arc_cnt; ++i){
scanf("%s %*s %s %u", start_ver, end_ver, &weight);
start_pos = find_vers_idx(pg, start_ver);
end_pos = find_vers_idx(pg, end_ver);
if (!add_graph_arc(pg, start_pos, end_pos, weight)){ ///< 向图中增加边信息
return RET_FAILED;
}
}
return RET_SUCCESS;
}
/**
*\brief 输出图的结构信息
*\param[in] pg 图的句柄
*/
static void print_graph(adj_graph_st *pg)
{
arc_st *p_tmparc = NULL;
unsigned int i = 0;
assert(NULL != pg);
printf("输出图的链接信息:\n");
for (i = 0; i < pg->ver_cnt; ++i){
printf("%s ", pg->ver_list[i].ver_name);
p_tmparc = pg->ver_list[i].p_arc;
while (NULL != p_tmparc){
printf("->%u(%u)", p_tmparc->index, p_tmparc->weight);
p_tmparc = p_tmparc->p_next;
}
printf("\n");
}
}
/**
*\brief 图的 销毁
*\param[in,out] pg 图的句柄
*/
static void destroy_graph(adj_graph_st *pg)
{
arc_st *p_tmparc = NULL;
unsigned int i = 0;
assert(NULL != pg);
///< 释放邻接表
for (i = 0; i < pg->ver_cnt; ++i){
while (NULL != pg->ver_list[i].p_arc){
p_tmparc = pg->ver_list[i].p_arc;
pg->ver_list[i].p_arc = p_tmparc->p_next;
free(p_tmparc);
}
}
///< 释放图的节点信息
if (NULL != pg->ver_list){
free(pg->ver_list);
pg->ver_list = NULL;
}
}
/**
*\brief 调整边的辅助数组中边的状态
*\param[in] pg 图的句柄
*\param[in] prim_array 边的辅助数字
*\param[in] idx刚加入S集的顶点下标
*/
static void adjust_arc_status(adj_graph_st *pg, prim_arc_st *prim_array, unsigned int idx)
{
prim_arc_st *p_ret = NULL;
unsigned int i = 0;
for (i = 0; i < pg->arc_cnt; ++i){
if ((prim_array[i].ver1 == idx || prim_array[i].ver2 == idx) && prim_array[i].status != 2){
if (prim_array[i].status == 0){
prim_array[i].status = 1;
}else if (prim_array[i].status == 1){
prim_array[i].status = 2;
}else{
assert(2 > prim_array[i].status);
}
}
}
}
/**
*\brief 找到和 S集合 顶点相连的最短边
*\param[in] pg 图的句柄
*\param[in] prim_array 边的辅助数字
*\retval 返回最短边的地址
*/
static prim_arc_st *search_min_arc(adj_graph_st *pg, prim_arc_st *prim_array)
{
prim_arc_st *p_ret = NULL;
unsigned int i = 0;
for (i = 0; i < pg->arc_cnt; ++i){
if (prim_array[i].status == 1){
if (NULL == p_ret){
p_ret = &prim_array[i];
}else{
if (p_ret->weight > prim_array[i].weight){
p_ret = &prim_array[i];
}
}
}
}
assert(NULL != p_ret);
return p_ret;
}
/**
*\brief 输出prim计算的最终结果
*\param[in] pg 图的句柄
*\param[in] prim_array 顶点的辅助数字
*/
static void print_prim_result(adj_graph_st *pg, prim_ver_st *prim_array)
{
unsigned int i = 0, j = 0;
unsigned int total = 0;
printf("\nresult: \n");
// 对结果按照 加入最小生成树的先后顺序排序
for (i = 0; i < pg->ver_cnt; ++i){
for (j = 0; j < pg->ver_cnt; ++j){
if (prim_array[j].index == i + 1){
printf("%u(%u) ", j, prim_array[j].weight);
total += prim_array[j].weight;
}
}
}
printf("\ntotal_weight[%u]\n", total);
}
/**
*\brief 计算最短路径
*\param[in] pg 图的句柄
*\param[in] sidx 起始搜索的顶点
*/
static void prim_graph(adj_graph_st *pg, unsigned int sidx)
{
prim_ver_st *prim_ver_ary = NULL;
prim_arc_st *prim_arc_ary = NULL;
arc_st *p_tmparc = NULL;
unsigned int i = 0, j = 0, index = 1;
assert(NULL != pg);
assert(sidx < pg->ver_cnt);
// 初始化辅助变量
prim_arc_ary = (prim_arc_st *)malloc(sizeof(prim_arc_st) * pg->arc_cnt);
assert(NULL != prim_arc_ary);
for (i = 0; i < pg->ver_cnt; ++i){
p_tmparc = pg->ver_list[i].p_arc;
while (NULL != p_tmparc){
if (i < p_tmparc->index){
prim_arc_ary[j].ver1 = i;
prim_arc_ary[j].ver2 = p_tmparc->index;
prim_arc_ary[j].weight = p_tmparc->weight;
prim_arc_ary[j].status = 0;
++j;
}
p_tmparc = p_tmparc->p_next;
}
}// 这里其实可以采用堆排序 加速后面的查找过程
prim_ver_ary = (prim_ver_st *)malloc(sizeof(prim_ver_st) * pg->ver_cnt);
assert(NULL != prim_ver_ary);
for (i = 0; i < pg->ver_cnt; ++i){
prim_ver_ary[i].index = 0;
prim_ver_ary[i].weight = 0;
prim_ver_ary[i].isfinal = 0;
}
prim_ver_ary[sidx].index = index++;
prim_ver_ary[sidx].weight = 0;
prim_ver_ary[sidx].isfinal = 1;
adjust_arc_status(pg, prim_arc_ary, sidx);
for (i = 1; i < pg->ver_cnt; ++i){
// 查找和S集合连接的最小边
prim_arc_st *prim_arc = NULL;
prim_arc = search_min_arc(pg, prim_arc_ary);
if (!prim_ver_ary[prim_arc->ver1].isfinal){
sidx = prim_arc->ver1;
prim_ver_ary[prim_arc->ver1].isfinal = 1;
prim_ver_ary[prim_arc->ver1].index = index++;
prim_ver_ary[prim_arc->ver1].weight = prim_arc->weight;
}else{
sidx = prim_arc->ver2;
prim_ver_ary[prim_arc->ver2].isfinal = 1;
prim_ver_ary[prim_arc->ver2].index = index++;
prim_ver_ary[prim_arc->ver2].weight = prim_arc->weight;
}
adjust_arc_status(pg, prim_arc_ary, sidx);
}
// 输出所有的具体信息
print_prim_result(pg, prim_ver_ary);
}
int main(void)
{
adj_graph_st graph;
creat_graph(&graph);
print_graph(&graph);
prim_graph(&graph, 0);
destroy_graph(&graph);
return 0;
}
程序代码:
最小生成树(Prim)
在连通图中, 通过最小的代价将图中的顶点串连起来,算法非常类似迪杰斯特拉,
两者的区别在于, 迪杰斯特拉是求2个顶点间的距离, 而Prim算法是求整个图中构成连通的最小代价, 可见Prim算法实际上比迪杰斯特拉算法更加的简单, 因为在求最小生成树的过程中最要选取最短的和已选择的顶点相连的边即可。
算法的核心是: 无向带权图G(V,E),已经被选择在最小生成树中的顶点集合记为S,S的初始状态为空(S={}),任意选取一个顶点v,加入S中(S={v}),下一个顶点的选取规则,选取所有边中,与S中相连的边权重最小的边, 其中边的一个顶点属于S,另一个顶点属于V-S, 一直这样循环下去, 直到S = V 算法结束
例如:图G 有顶点信息为(v1,v2,v3,v4,v5,v6) 边的权重分别为
v1 - v2 7
v1 - v3 9
v1 - v6 14
v2 - v4 15
v2 - v3 10
v3 - v4 11
v3 - v6 2
v4 - v5 6
v5 - v6 9
假设图G从v1顶点开始搜索,演示如下:
步骤1、将v1加入到已发现顶点集合S{v1}
步骤2、遍历与集合S相连的所有边, 找去其中权重最小的边,将另一个顶点加入到集合S中,从v2,v3,v6中选出v2,S{v1,v2}
步骤3、遍历与集合S相连的所有边, 找去其中权重最小的边,将另一个顶点加入到集合S中,从v3,v4,v6中选出v3,S{v1,v2,v3}
步骤4、遍历与集合S相连的所有边, 找去其中权重最小的边,将另一个顶点加入到集合S中,从v4,v6中选出v6,S{v1,v2,v3,v6}
步骤5、遍历与集合S相连的所有边, 找去其中权重最小的边,将另一个顶点加入到集合S中,从v4,v5中选出v5,S{v1,v2,v3,v6,v5}
步骤6、遍历与集合S相连的所有边, 找去其中权重最小的边,将另一个顶点加入到集合S中,从v4中选出v4,S{v1,v2,v3,v6,v5,v4}
------+-----------+-----------+-----------+------------+-----------+------------+--------------------
| v1 | v2 | v3 | v4 | v5 | v6 | S
------+-----------+-----------+-----------+------------+-----------+------------+--------------------
步骤1 | (v1,v1) 0 | (v1,v2) 7 | (v1,v3) 9 | Na | Na | (v1,v6) 14 | {v1}
------+-----------+-----------+-----------+------------+-----------+------------+--------------------
步骤2 | (v1,v1) 0 | (v1,v2) 0 | (v1,v3) 9 | (v2,v4) 15 | Na | (v1,v6) 14 | {v1,v2}
------+-----------+-----------+-----------+------------+-----------+------------+--------------------
步骤3 | (v1,v1) 0 | (v1,v2) 0 | (v1,v3) 0 | (v3,v4) 10 | Na | (v3,v6) 2 | {v1,v2,v3}
------+-----------+-----------+-----------+------------+-----------+------------+--------------------
步骤4 | (v1,v1) 0 | (v1,v2) 0 | (v1,v3) 0 | (v3,v4) 10 | (v6,v5) 9 | (v3,v6) 0 | {v1,v2,v3,v6}
------+-----------+-----------+-----------+------------+-----------+------------+--------------------
步骤5 | (v1,v1) 0 | (v1,v2) 0 | (v1,v3) 0 | (v5,v4) 6 | (v6,v5) 0 | (v3,v6) 0 | {v1,v2,v3,v6,v5}
------+-----------+-----------+-----------+------------+-----------+------------+--------------------
步骤6 | (v1,v1) 0 | (v1,v2) 0 | (v1,v3) 0 | (v5,v4) 0 | (v6,v5) 0 | (v3,v6) 0 | {v1,v2,v3,v6,v5,v4}
------+-----------+-----------+-----------+------------+-----------+------------+--------------------
$ ./graph_prim
输入图的结点数:6
输入图的边数:9
输入结点序列(例如:v1 v2 v3):
v1 v2 v3 v4 v5 v6
输入边信息(例如:v1 - v2 5):
v1 - v2 7
v1 - v3 9
v1 - v6 14
v2 - v4 15
v2 - v3 10
v3 - v4 11
v3 - v6 2
v4 - v5 6
v5 - v6 9
输出图的链接信息:
v1 ->5(14)->2(9)->1(7)
v2 ->2(10)->3(15)->0(7)
v3 ->5(2)->3(11)->1(10)->0(9)
v4 ->4(6)->2(11)->1(15)
v5 ->5(9)->3(6)
v6 ->4(9)->2(2)->0(14)
result:
0(0) 1(7) 2(9) 5(2) 4(9) 3(6)
total_weight[33]
----------------------------------------
$ ./graph_prim
输入图的结点数:4
输入图的边数:3
输入结点序列(例如:v1 v2 v3):
v1 v2 v3 v4
输入边信息(例如:v1 - v2 5):
v1 - v2 1
v1 - v3 2
v1 - v4 3
输出图的链接信息:
v1 ->3(3)->2(2)->1(1)
v2 ->0(1)
v3 ->0(2)
v4 ->0(3)
result:
0(0) 1(1) 2(2) 3(3)
total_weight[6]
-----------------------------------------------