B+树B-树的基本操作
B+树B-树构建、查找、插入和删除操作程序。 (C语言)本人确实不理解,更不要说做了。特此求助~~~
[ 本帖最后由 kekin 于 2011-6-27 16:17 编辑 ]
程序代码:#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define OK 1
#define ERROR -1
#define m 3 //3阶树
#define N 16 //数据元素个数
#define MAX 5 //字符串最大长度+1
typedef int KeyType;
struct Others //记录的其它部分
{
char info[MAX];
};
struct Record
{
KeyType key; //关键字
Others others; //其它部分
};
typedef struct BTNode
{
int keynum; //结点中关键字个数
BTNode *parent;//指向双亲节点
struct Node //结点向量类型
{
KeyType key; //关键字向量
BTNode *ptr;//子树指针向量
Record *recptr; //记录向量指针
}node[m+1]; //key,recptr的0号单元未用
}BTNode,*BTree;
struct Result //B树的查找结果类型
{
BTNode *pt; //指向找到的结点
int i; //在节点中关键字序号,1...m
int tag; //1表示查找成功,0表示查找失败。
};
int InitDSTable(BTree &DT)
{
DT=NULL;
return OK;
}//InitDSTable
#include"Tree1.h"
void DestroyDSTable(BTree &DT)
{
int i;
if(DT) //非空树
{
for(i=0;i<=DT->keynum;i++)
DestroyDSTable(DT->node[i].ptr);
free(DT);
DT=NULL;
}//if
}//DestroyDSTable
int Search(BTree p,KeyType K)
{//在p->node[1...keytype].key中查找i,使得p->node[i].key<=K<
//p->node[i+1].key
int i=0,j;
for(j=1;j<=p->keynum;j++)
if(p->node[j].key<=K)
i=j;
return i;
}//Search
void Insert(BTree &q,int i,Record *r,BTree ap)
{//将r->key、r和ap分别插入到q->key[i+1]、
//q->recptr[ i+1]和q->ptr[i+1]中
int j;
for(j=q->keynum;j>i;j--) //空出q->node[i+1]
q->node[j+1]=q->node[j];
q->node[i+1].key=r->key;
q->node[i+1].ptr=ap; //前加入的结点,还没有儿子结点
q->node[i+1].recptr=r;
q->keynum++;
}//Insert
void NewRoot(BTree &T,Record *r,BTree ap)
{// 生成含信息(T,r,ap)的新的根结点*T,原T和ap为子树指针
BTree p;
p=(BTree)malloc(sizeof(BTNode));
p->node[0].ptr=T;
T=p;
if(T->node[0].ptr)
T->node[0].ptr->parent=T;
T->parent=NULL;
T->keynum=1;
T->node[1].key=r->key;
T->node[1].recptr=r;
T->node[1].ptr=ap;
if(T->node[1].ptr)
T->node[1].ptr->parent=T;
}//NewRoot
void split(BTree &q,BTree &ap)
{// 将结点q分裂成两个结点,前一半保留,后一半移入新生结点ap
int i,s=(m+1)/2;
ap=(BTree)malloc(sizeof(BTNode));//生成新结点ap
ap->node[0].ptr=q->node[s].ptr;//原来结点中间位置关键字相应指针指向的子树放到
//新生成结点的0棵子树中去
for(i=s+1;i<=m;i++) //后一半移入ap
{
ap->node[i-s]=q->node[i];
if(ap->node[i-s].ptr)
ap->node[i-s].ptr->parent=ap;
}//for
ap->keynum=m-s;
ap->parent=q->parent;
q->keynum=s-1; // q的前一半保留,修改keynum
}//split
void InsertBTree(BTree &T,Record *r,BTree q,int i)
{//在m阶B树T上结点*q的key[i]与key[i+1]之间插入关键字K的指针r。若引起
// 结点过大,则沿双亲链进行必要的结点分裂调整,使T仍是m阶B树。
BTree ap=NULL;
int finished=false;
int s;
Record *rx;
rx=r;
while(q&&!finished)
{
Insert(q,i,rx,ap);//将r->key、r和ap分别插入到q->key[i+1]、
//q->recptr[i+1]和q->ptr[i+1]中
if(q->keynum<m)
finished=true;
else
{//分裂结点*q
s=(m+1)/2;
rx=q->node[s].recptr;
split(q,ap);//将q->key[s+1..m],q->ptr[s..m]和q->recptr[s+1..m]
//移入新结点*ap
q=q->parent;
if(q)
i=Search(q,rx->key);//在双亲结点*q中查找rx->key的插入位置
}//else
}//while
if(!finished) //T是空树(参数q初值为NULL)或根结点已分裂为
//结点*q和*ap
NewRoot(T,rx,ap);
}//InsertBTree
Result SearchBTree(BTree T,KeyType K)
{// 在m阶B树T上查找关键字K,返回结果(pt,i,tag)。若查找成功,则特征值
// tag=1,指针pt所指结点中第i个关键字等于K;否则特征值tag=0,等于K的
// 关键字应插入在指针Pt所指结点中第i和第i+1个关键字之间。
BTree p=T,q=NULL; //初始化,p指向待查结点,q指向p的双亲
int found=false;
int i=0;
Result r;
while(p&&!found)
{
i=Search(p,K);//p->node[i].key≤K<p->node[i+1].key
if(i>0&&p->node[i].key==K)
found=true;
else
{
q=p;
p=p->node[i].ptr;//在子树中继续查找
}//else
}//while
r.i=i;
if(found)
{
r.pt=p;
r.tag=1;
}//if
else
{
r.pt=q;
r.tag=0;
}//else
return r;
}//SearchBTree
void print(BTNode c,int i) // TraverseDSTable()调用的函数
{
printf("(%d,%s)\n",c.node[i].key,c.node[i].recptr->others.info);
}//print
void TraverseDSTable(BTree DT,void(*Visit)(BTNode,int))
{// 初始条件: 动态查找表DT存在,Visit是对结点操作的应用函数
// 操作结果: 按关键字的顺序对DT的每个结点调用函数Visit()一次且至多一次
int i;
if(DT) //非空树
{
if(DT->node[0].ptr) // 有第0棵子树
TraverseDSTable(DT->node[0].ptr,Visit);
for(i=1;i<=DT->keynum;i++)
{
Visit(*DT,i);
if(DT->node[i].ptr) // 有第i棵子树
TraverseDSTable(DT->node[i].ptr,Visit);
}//for
}//if
}//TraverseDSTable
void InputBR(BTree &t,Record r[])
{
Result s;
for(int i=0;i<N;i++)
{
s=SearchBTree(t,r[i].key);
if(!s.tag)
InsertBTree(t,&r[i],s.pt,s.i);
}
}//InputBR
void UserSearch(BTree t)
{
int i;
Result s;
printf("\n请输入待查找记录的关键字: ");
scanf("%d",&i);
s=SearchBTree(t,i);
if(s.tag)
print(*(s.pt),s.i);
else
printf("没找到");
printf("\n");
}//UserSearch
void DeleteIt(BTree t,BTNode *dnode,int id)
{
if(dnode->keynum>=ceil(m/2.0))
{
dnode->keynum--;
dnode->node[id].ptr=NULL;
}//if被删关键字Ki所在结点的关键字数目不小于ceil(m/2),则只需从结点中删除Ki和相应指针Ai,树的其它部分不变。
else if((dnode->keynum==(ceil(m/2.0)-1))&&((id+1)<(m-1))&&dnode->parent->node[id+1].ptr->keynum>(ceil(m/2.0)-1))
{
for(int i=1;i<m&&dnode->parent->node[i].key < dnode->parent->node[id+1].ptr->node[1].key;i++)
dnode->node[i].key=dnode->parent->node[i].key;
dnode->parent->node[1].key=dnode->parent->node[id+1].ptr->node[1].key;
(dnode->parent->node[id+1].ptr->keynum)--;
}//else if 被删关键字Ki所在结点的关键字数目等于ceil(m/2)-1,则需调整。本次为与右兄弟调整
else if((dnode->keynum==(ceil(m/2.0)-1))&&((id-1)>0 )&&dnode->parent->node[id-1].ptr->keynum>(ceil(m/2.0)-1))
{
for(int i=1;i<m&&dnode->parent->node[i].key > dnode->parent->node[id-1].ptr->node[dnode->parent->node[id-1].ptr->keynum].key;i++)
dnode->node[i].key=dnode->parent->node[i].key;
dnode->parent->node[1].key=dnode->parent->node[id-1].ptr->node[dnode->parent->node[id-1].ptr->keynum].key;
(dnode->parent->node[id-1].ptr->keynum)--;
}//2-else if被删关键字Ki所在结点的关键字数目等于ceil(m/2)-1,则需调整。本次为与左兄弟调整
else if((dnode->keynum==(ceil(m/2.0)-1))&&((id+1)<(m-1))&&dnode->parent->node[id+1].ptr->keynum==(ceil(m/2.0)-1))
{
do
{
BTree tmp;
tmp=dnode;
dnode->parent->node[id+1].ptr->node[2]=dnode->parent->node[id+1].ptr->node[1];
dnode->parent->node[id+1].ptr->node[1]=dnode->parent->node[1];
dnode->parent->node[id+1].ptr->keynum++;
dnode->parent->node[id+1].ptr->node[0].ptr=dnode->node[1].ptr;
dnode->parent->keynum--;
dnode->parent->node[id].ptr=NULL;
tmp=dnode;
if(dnode->parent->keynum>=(ceil(m/2.0)-1))
dnode->parent->node[1]=dnode->parent->node[2];
dnode=dnode->parent;
free(tmp);
}while(dnode->keynum<(ceil(m/2.0)-1)); //双亲中keynum<
}//3-else if被删关键字Ki所在结点和其相邻兄弟结点中的的关键字数目均等于ceil(m/2)-1,本次假设右兄弟存在
else if((dnode->keynum==(ceil(m/2.0)-1))&&(id-1)>0 &&dnode->parent->node[id-1].ptr->keynum==(ceil(m/2.0)-1))
{
do
{
BTree tmp;
tmp=dnode;
dnode->parent->node[id-1].ptr->node[2]=dnode->parent->node[id-1].ptr->node[1];
dnode->parent->node[id-1].ptr->node[1]=dnode->parent->node[1];
dnode->parent->node[id-1].ptr->keynum++;
dnode->parent->node[id-1].ptr->node[0].ptr=dnode->node[1].ptr;
dnode->parent->keynum--;
dnode->parent->node[id].ptr=NULL;
tmp=dnode;
if(dnode->parent->keynum>=(ceil(m/2.0)-1))
dnode->parent->node[1]=dnode->parent->node[2];
dnode=dnode->parent;
free(tmp);
}while(dnode->keynum<(ceil(m/2.0)-1)); //双亲中keynum<
}//4-else if被删关键字Ki所在结点和其相邻兄弟结点中的的关键字数目均等于ceil(m/2)-1,本次假设左兄弟存在
else printf("Error!\n"); //出现异常
}//DeleteIt
void UserDelete(BTree t)
{
KeyType date;
Result s;
printf("Please input the date you want to delete:\n");
scanf("%d",&date);
s=SearchBTree(t,date);
if(!s.tag)
printf("Search failed,no such date\n");
else
DeleteIt(t,s.pt,s.i);
}//UserDelete
int main()
{
Record r[N]={{24,"1"},{45,"2"},{53,"3"},{12,"4"},{37,"5"},
{50,"6"},{61,"7"},{90,"8"},{100,"9"},{70,"10"},
{3,"11"},{30,"12"},{26,"13"},{85,"14"},{3,"15"},
{7,"16"}};
BTree t;
InitDSTable(t);
InputBR(t,r);
printf("按关键字的顺序遍历B_树:\n");
TraverseDSTable(t,print);
UserSearch(t);
UserDelete(t);
TraverseDSTable(t,print);
DestroyDSTable(t);
return 1;
}
怎么到删除的时候就删除不了,还有就是谁能帮我插入函数有没有问题。
程序代码:void DeleteIt(BTree t,BTNode *dnode,int id)
{
if(dnode->keynum>=ceil(m/2.0))
{
dnode->keynum--;
dnode->node[id].ptr=NULL;
}//if被删关键字Ki所在结点的关键字数目不小于ceil(m/2),则只需从结点中删除Ki和相应指针Ai,树的其它部分不变。
else if((dnode->keynum==(ceil(m/2.0)-1))&&((id+1)<(m-1))&&dnode->parent->node[id+1].ptr->keynum>(ceil(m/2.0)-1))
{
for(int i=1;i<m&&dnode->parent->node[i].key < dnode->parent->node[id+1].ptr->node[1].key;i++)
dnode->node[i].key=dnode->parent->node[i].key;
dnode->parent->node[1].key=dnode->parent->node[id+1].ptr->node[1].key;
(dnode->parent->node[id+1].ptr->keynum)--;
}//else if 被删关键字Ki所在结点的关键字数目等于ceil(m/2)-1,则需调整。本次为与右兄弟调整
else if((dnode->keynum==(ceil(m/2.0)-1))&&((id-1)>0 )&&dnode->parent->node[id-1].ptr->keynum>(ceil(m/2.0)-1))
{
for(int i=1;i<m&&dnode->parent->node[i].key > dnode->parent->node[id-1].ptr->node[dnode->parent->node[id-1].ptr->keynum].key;i++)
dnode->node[i].key=dnode->parent->node[i].key;
dnode->parent->node[1].key=dnode->parent->node[id-1].ptr->node[dnode->parent->node[id-1].ptr->keynum].key;
(dnode->parent->node[id-1].ptr->keynum)--;
}//2-else if被删关键字Ki所在结点的关键字数目等于ceil(m/2)-1,则需调整。本次为与左兄弟调整
else if((dnode->keynum==(ceil(m/2.0)-1))&&((id+1)<(m-1))&&dnode->parent->node[id+1].ptr->keynum==(ceil(m/2.0)-1))
{
do
{
BTree tmp;
tmp=dnode;
dnode->parent->node[id+1].ptr->node[2]=dnode->parent->node[id+1].ptr->node[1];
dnode->parent->node[id+1].ptr->node[1]=dnode->parent->node[1];
dnode->parent->node[id+1].ptr->keynum++;
dnode->parent->node[id+1].ptr->node[0].ptr=dnode->node[1].ptr;
dnode->parent->keynum--;
dnode->parent->node[id].ptr=NULL;
tmp=dnode;
if(dnode->parent->keynum>=(ceil(m/2.0)-1))
dnode->parent->node[1]=dnode->parent->node[2];
dnode=dnode->parent;
free(tmp);
}while(dnode->keynum<(ceil(m/2.0)-1)); //双亲中keynum<
}//3-else if被删关键字Ki所在结点和其相邻兄弟结点中的的关键字数目均等于ceil(m/2)-1,本次假设右兄弟存在
else if((dnode->keynum==(ceil(m/2.0)-1))&&(id-1)>0 &&dnode->parent->node[id-1].ptr->keynum==(ceil(m/2.0)-1))
{
do
{
BTree tmp;
tmp=dnode;
dnode->parent->node[id-1].ptr->node[2]=dnode->parent->node[id-1].ptr->node[1];
dnode->parent->node[id-1].ptr->node[1]=dnode->parent->node[1];
dnode->parent->node[id-1].ptr->keynum++;
dnode->parent->node[id-1].ptr->node[0].ptr=dnode->node[1].ptr;
dnode->parent->keynum--;
dnode->parent->node[id].ptr=NULL;
tmp=dnode;
if(dnode->parent->keynum>=(ceil(m/2.0)-1))
dnode->parent->node[1]=dnode->parent->node[2];
dnode=dnode->parent;
free(tmp);
}while(dnode->keynum<(ceil(m/2.0)-1)); //双亲中keynum<
}//4-else if被删关键字Ki所在结点和其相邻兄弟结点中的的关键字数目均等于ceil(m/2)-1,本次假设左兄弟存在
else printf("Error!\n"); //出现异常
}//DeleteIt
就这个函数有错应该