
import cv2
import numpy as np
from fpdf import FPDF
import os
def correct_perspective(image_path, output_pdf_path):
# 读取图像
image = cv2.imread(image_path)
if image is None:
print("无法读取图像,请检查路径是否正确。")
return
# 转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 高斯模糊
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# 边缘检测
edged = cv2.Canny(blurred, 50, 150)
# 查找轮廓
contours, _ = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:5]
# 找到文档的轮廓
for contour in contours:
peri = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
if len(approx) == 4:
doc_contour = approx
break
# 如果没有找到四边形轮廓,直接保存原图
if 'doc_contour' not in locals():
print("未找到文档轮廓,保存原图。")
cv2.imwrite(output_pdf_path.replace('.pdf', '.jpg'), image)
return
# 透视变换
def order_points(pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped
warped = four_point_transform(image, doc_contour.reshape(4, 2))
# 保存矫正后的图像
corrected_image_path = output_pdf_path.replace('.pdf', '.jpg')
cv2.imwrite(corrected_image_path, warped)
# 将图像转换为PDF并铺满A4纸张
pdf = FPDF(format='A4') # 设置PDF为A4尺寸
pdf.add_page()
# 获取A4纸张的尺寸(单位:毫米)
a4_width = 210
a4_height = 297
# 将图像铺满A4纸张
pdf.image(corrected_image_path, x=0, y=0, w=a4_width, h=a4_height)
# 保存PDF
pdf.output(output_pdf_path, "F")
# 删除临时图像文件
os.remove(corrected_image_path)
print(f"PDF文件已保存到:{output_pdf_path}")
# 使用示例
image_path = "path_to_your_image.jpg" # 替换为你的图片路径
output_pdf_path = os.path.join(os.path.expanduser("~"), "Desktop", "corrected_document.pdf")
correct_perspective(image_path, output_pdf_path)
import numpy as np
from fpdf import FPDF
import os
def correct_perspective(image_path, output_pdf_path):
# 读取图像
image = cv2.imread(image_path)
if image is None:
print("无法读取图像,请检查路径是否正确。")
return
# 转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 高斯模糊
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# 边缘检测
edged = cv2.Canny(blurred, 50, 150)
# 查找轮廓
contours, _ = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:5]
# 找到文档的轮廓
for contour in contours:
peri = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
if len(approx) == 4:
doc_contour = approx
break
# 如果没有找到四边形轮廓,直接保存原图
if 'doc_contour' not in locals():
print("未找到文档轮廓,保存原图。")
cv2.imwrite(output_pdf_path.replace('.pdf', '.jpg'), image)
return
# 透视变换
def order_points(pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped
warped = four_point_transform(image, doc_contour.reshape(4, 2))
# 保存矫正后的图像
corrected_image_path = output_pdf_path.replace('.pdf', '.jpg')
cv2.imwrite(corrected_image_path, warped)
# 将图像转换为PDF并铺满A4纸张
pdf = FPDF(format='A4') # 设置PDF为A4尺寸
pdf.add_page()
# 获取A4纸张的尺寸(单位:毫米)
a4_width = 210
a4_height = 297
# 将图像铺满A4纸张
pdf.image(corrected_image_path, x=0, y=0, w=a4_width, h=a4_height)
# 保存PDF
pdf.output(output_pdf_path, "F")
# 删除临时图像文件
os.remove(corrected_image_path)
print(f"PDF文件已保存到:{output_pdf_path}")
# 使用示例
image_path = "path_to_your_image.jpg" # 替换为你的图片路径
output_pdf_path = os.path.join(os.path.expanduser("~"), "Desktop", "corrected_document.pdf")
correct_perspective(image_path, output_pdf_path)